
Gamma imputation tutorial (Jackson 2014)

Nikolas S. Burkoff**, Paul Metcalfe*, Jonathan Bartlett* and David Ruau*

*AstraZeneca, B&I, Advanced Analytics Centre, UK
**Tessella, 26 The Quadrant, Abingdon Science Park, Abingdon, OX14 3YS, UK

October 27, 2024

1 Introduction

In this vignette the InformativeCensoring R library is used to perform the multiple imputation (MI)
approach proposed by Jackson et al. [1]. Throughout this package the method is referred to as the γ-
imputation method.

2 Theory

The γ-imputation method allows the independent censoring assumption in the Cox proportional hazard
model to be relaxed, allowing sensitivity analyses to be performed. This section describes the method and
the reader is referred to [1] for further details, including possible extensions of the algorithm not implemented
in this package.

Consider a time to event data set where subject i has time to event Ti and is censored at time Ci. Each
subject has an observed time Yi = min(Ci, Ti) and event indicator δi where δi = 1 when Ti < Ci and δi = 0
otherwise. The MI procedure generates M imputed datasets where subjects who were censored now have an
imputed time Tm

i ≥ Yi and a new event indicator δmi . The data {Tm
i , δmi } are imputed under the assumption

that at the point of censoring the hazard function jumps by a (potentially subject specific) constant1 denoted
by γi. With γi ̸= 0, the independent censoring assumption has been relaxed, and by varying the size and
magnitude of γi sensitivity analyses can be performed.

Once the M data sets have been imputed, standard time to event statistical analyses can be applied
to each data set and the results combined using Rubin’s rules [3] to produce a single overall estimate for
parameters of interest.

2.1 The imputation model

The approach proposed by [1] assumes that the hazard for failure, given that censoring has not yet occurred,
is equal to

h(t|Ci > t, Zi, Si) = h(0,Si)(t) exp(βZi)

where Zi are time independent covariates for subject i, Si is the strata for subject i, h(0,Si)(t) is the baseline
hazard function for the strata defined by Si and β are the regression coefficients. This model can be fitted
to the observed data using partial likelihood in the standard way2.

After censoring has occurred it is assumed

h(t|Ci < t, Zi, Si) = h(0,Si)(t) exp(βZi) exp(γi),

1The general framework allows γ to be general function, see [1] for further details.
2The package fits Cox proportional hazard models, but in principle other models could be used.

1

therefore if γi > 0 there is an elevated risk for failure after censoring and if γi < 0 there is a decreased
risk after censoring. By allowing subject specific γi it is possible to take into account the reason for subject
censoring into the imputation procedure, i.e. use different values of γi dependent on the reason for censoring.
An example of this could be if a subject was censored because they left the country, which might be assumed
to be unrelated to the disease, and therefore one may be willing to assume γi = 0.

An important point to note is that the parameter γi represents the change in log hazard for failure
following censoring, conditional on the covariates in the imputation model. The interpretation of γi is
thus as a conditional log hazard ratio, adjusted for whatever covariates Zi and strata Si have already been
accounted for.

2.2 Number of imputations

In multiple imputation the user must specify the number of imputations to be generated. The validity
of results do not depend on how many imputations are used. However, if a small number of imputations
are used, the results may contain a non-negliglble amount of simulation (Monte-Carlo) variability. The
magnitude of this variability can be assessed by re-running the analysis a number of times (without resetting
the seed) with a given number of imputations. If the variability between the results of the separate runs is
appreciable, then it is advised that a larger number of imputations be used. The judgment as to what level
of simulation error is acceptable can usually be made by ensuring that sufficient imputations are used such
that if the analysis were to be re-run with a different seed, the results would not differ to the precision with
which they are to be reported.

2.3 Bootstrapping

In order to make the imputations so called ‘proper’, to generate each imputed dataset the Cox model is fitted
to a bootstrap sample of the original dataset. Strata can be passed in order to perform this sampling within
strata. The usual recommendation (for non-parametric bootstrap) is that the bootstrap sampling scheme
should match that used to sample the original data.

2.4 Sampling event times

Given a subject that was censored at time Ci (so δi = 0), in strata Si and with covariates Zi an imputed
failure time (> Ci) is sampled from the model

h(t|Ci, Zi, Si) = ĥj(0,Si)(t) exp(β̂jZi + γi)

where ĥj(0,Si) and β̂j are from the model fit associated with bootstrapped sample j. The precise details of
the sampling procedure used can be found in [1]. In the following we assume that a subject has a maximum
possible follow up period of Fi. If the imputed time is > Fi, then a time of Fi and event indicator δi = 0
are imputed. Due to the nature of the sampling procedure used, imputed event times can only take the
value of one of the observed event times, so if the follow up time is unknown (or until an event occurs) we
recommend setting Fi as the maximum time of any subject on the trial.

2.5 Analysing the imputed data sets

Conventional Cox models can be fitted to each of the imputed data sets and can generate M estimates for a
regression coefficient of interest, say β: {β̂1, β̂2, . . ., β̂M}, together with M estimates of their variance {v1,
v2, . . ., vM}. Using Rubin’s rules [3] these values can be combined into a single estimate for β, its variance
and statistical significance level:

� Estimate: β̂ = mean(β̂k)

� Variance: v̂ = U + (1 + 1/M)B where U = mean(vk) and B = var(β̂k)

� Test statistic: t = β̂/
√
v̂ follows a t-distribution with ν = (M −1)

(
1 + U

(1+1/M)B

)2

degrees of freedom

(see [4]).

2

3 Using the package

In this section we describe how to use the package, step by step. We first load the package:

library(InformativeCensoring)

Note, messages about masking such as ‘The following object is masked from ‘package:survival’: cox.zph’
are to be expected.

3.1 Data

In this example we use the nwtco data set from the survival package. Note that the following analyses are
purely illustrative, and are intended only to demonstrate the usage of the package. We first load the data:

data(nwtco)

#only use first 500 subjects

nwtco <- nwtco[1:500,]

head(nwtco)

seqno instit histol stage study rel edrel age in.subcohort

1 1 2 2 1 3 0 6075 25 FALSE

2 2 1 1 2 3 0 4121 50 FALSE

3 3 2 2 1 3 0 6069 9 FALSE

4 4 2 1 4 3 0 6200 28 TRUE

5 5 2 2 2 3 0 1244 55 FALSE

6 6 1 1 2 3 0 2932 32 FALSE

3.2 Setting the seed

Since multiple imputation methods makes use of random resampling and random imputation, the results
will change every time the (same) analysis is performed, unless the seed is set prior to analysis. Thus the
seed should be set (to an arbitrary integer) prior to analysis, to ensure that results are reproducible.

#Set random number seed

set.seed(3957129)

3.3 Specifying γi

The function which performs the imputation has two arguments (gamma.factor and gamma) which determine
whether imputation is performed for each subject and if it is to be performed, what the value of γi is. At
least one of gamma.factor and gamma must be passed to the function.

In the simplest usage, the user supplies a single numeric value to the argument gamma.factor but nothing
in the gamma argument. The function then imputes using γi =gamma.factor.

Alternatively, the user can supply a column name or vector of values (with length equal to the number
of rows in the data frame) to the argument gamma, but not pass a value to the gamma.factor argument.
In this case γi equals the corresponding value in the vector passed to gamma. If a subject’s corresponding
element of gamma is NA, no imputation will be performed for that subject. If a subject’s corresponding
element is 0, imputation will always be performed assuming non-informative censoring (conditional on the
model covariates).

Lastly, the user may supply both the gamma.factor and gamma arguments. In this case γi is calculated
according to

γi = gamma[i]× gamma.factor

3

where gamma[i] denotes the ith element of the argument gamma.
To illustrate, we now define a new column in the data frame, basegamma, as follows

nwtco$basegamma <- 1

nwtco$basegamma[nwtco$histol==2] <- NA

This definition will mean that those subjects with histol==2 will not have imputation performed.

3.4 Generating imputations

The following code generates 10 imputed datasets using the gammaImpute function. Following this code we
then describe each of the arguments.

#Create the m imputed data sets (a GammaImputedSet object)

imputed.data.sets <- gammaImpute(formula=Surv(edrel,rel)~histol + instit + strata(stage),

data = nwtco, m=10,

gamma="basegamma", gamma.factor=0.5, DCO.time=6209)

This function takes the following arguments:

� formula: the model formula to be used when fitting the models in order to produce baseline hazards
and linear predictors. Only right-censored Surv objects can be used and cluster and tt terms cannot
be included; however, strata terms can be used3.

� data: a data frame to apply the multiple imputation method.

� m: the number of data sets to impute.

� gamma: either column name for the subjects’ base gamma values (in quotes as above) or a vector of base
gamma values, as described previously.

� gamma.factor: as described previously. Here we have used a value of 0.5, so that for those subjects who
are being imputed (as dictated by basegamma), their log hazard following censoring is being increased
by 0.5.

� bootstrap.strata: any strata to be used in the bootstrap sampling. This option is distinct from any
strata argument used in model formula. If the argument is not used then standard resampling with
replacement is used. See the strata argument for the boot function for further details.

� DCO.time: either column name containing the subject’s data cutoff time (this is Fi in Section 2.4 and
see this section for further details) or a vector of DCO.times for the subjects or a single number to be
used as the DCO.time for all subjects.

� parallel, ncpus, cl: parallelism options, see help(gammaImpute) and the parallel package vignette
for further details – note when using parallel="multicore" or parallel="snow" it is necessary to set
the random number generator to type ”L’Ecuyer-CMRG” using the command RNGkind("L’Ecuyer-CMRG")
in order to ensure proper random number stream behaviour. A warning is output if this is not the
case, see parallel package vignette for further details.

Additional arguments are passed into the Cox model fitting function survival::coxph. Note by default
this function uses the Efron method for dealing with ties. If the Breslow method is required then use
ties="breslow"4.

3You cannot use strata(W1) + strata(W2) in a formula and should use strata(W1,W2) instead
4older versions of survival use method="breslow" instead.

4

Infinite γ: It is possible for γi to be infinite. If γ = −∞ then the subject is censored at their DCO.time.
If γi = ∞ (or large enough for R to view η = exp(−(βZi)− γi) as zero) then the package will cause imputed
subjects to die instantly at their time of censoring. If you use the function multiple times with increasing
values of γi for subjects, then at the point at which η becomes numerically indistinguishable from zero you
may get a somewhat abrupt change in coefficient values.

3.5 Fitting models to imputed data

We now analyse the generate imputed datasets, and combine the results using Rubin’s rules:

#Fit Cox models onto each imputed data set (a GammaStatList object)

imputed.fits <- ImputeStat(imputed.data.sets)

#Combine the results using Rubin's rules

summary(imputed.fits)

est se t df Pr(>|t|) lo 95 hi 95

histol 1.5329736 0.3033142 5.054078 300038587 4.324746e-07 0.9384887 2.1274585

instit 0.1670072 0.3110995 0.536829 661395638 5.913857e-01 -0.4427366 0.7767511

By default, Cox models using the same formula as was used in the imputation are fitted to the imputed
event times/indicators. It is possible to specify a different formula using the formula argument (only the
right hand side of the formula is required). It is also possible to fit either Weibull or exponential models to
the data by using the method argument. Additional arguments to ImputeStat, such as ties="breslow" are
passed directly into the model fitting function coxph or survreg. The fitting procedure can be parallelized
using the same parallel, ncpus and cl arguments as used in the gammaImpute function.

fits.weibull <- ImputeStat(imputed.data.sets,method="weibull",formula=~histol)

Caution is however advised in regards to fitting models that differ to that used to impute. In particular,
in general the imputation model should not impose restrictions that the analysis model does not [2].

Lastly, should the user wish to see the estimated coefficients and variances from the fits to each imputed
dataset, these can be viewed by:

imputed.fits$statistics

$estimates

histol instit

[1,] 1.534177 0.1680203

[2,] 1.534177 0.1680203

[3,] 1.534177 0.1680203

[4,] 1.534177 0.1680203

[5,] 1.534177 0.1680203

[6,] 1.534177 0.1680203

[7,] 1.522142 0.1578894

[8,] 1.534177 0.1680203

[9,] 1.534177 0.1680203

[10,] 1.534177 0.1680203

##

$vars

histol instit

[1,] 0.09202746 0.09680869

[2,] 0.09202746 0.09680869

[3,] 0.09202746 0.09680869

[4,] 0.09202746 0.09680869

5

[5,] 0.09202746 0.09680869

[6,] 0.09202746 0.09680869

[7,] 0.09158853 0.09643801

[8,] 0.09202746 0.09680869

[9,] 0.09202746 0.09680869

[10,] 0.09202746 0.09680869

3.6 Accessing individual imputed data sets and model fits

The ExtractSingle function can be used to extract out a single imputed data set. The index argument is
an integer between 1 and M and allows the user to specify which imputed data set is to be extracted:

#for the third data set

imputed.data.set <- ExtractSingle(imputed.data.sets,index=3)

head(imputed.data.set$data)

seqno instit histol stage study rel edrel age in.subcohort basegamma

1 1 2 2 1 3 0 6075 25 FALSE NA

2 2 1 1 2 3 0 4121 50 FALSE 1

3 3 2 2 1 3 0 6069 9 FALSE NA

4 4 2 1 4 3 0 6200 28 TRUE 1

5 5 2 2 2 3 0 1244 55 FALSE NA

6 6 1 1 2 3 0 2932 32 FALSE 1

internalDCO.time internal_gamma_val impute.time impute.event

1 6209 NA 6075 0

2 6209 0.5 6209 0

3 6209 NA 6069 0

4 6209 0.5 6209 0

5 6209 NA 1244 0

6 6209 0.5 6209 0

Note the new columns which include impute.time, the event/censoring time for the imputed data set;
impute.event the event indicator for the imputed data set; internal gamma val the value of γ used for
each subject.

The ExtractSingle function can also be used to extract individual model fits and view residuals. As
before the index argument is an integer between 1 and M allows the user to specify which model fit is to
be extracted:

fifth.fit <- ExtractSingle(imputed.fits,index=5)

print(fifth.fit)

Call:

model.function(formula = formula, data = object$data, model = TRUE)

##

coef exp(coef) se(coef) z p

histol 1.5342 4.6375 0.3034 5.057 4.25e-07

instit 0.1680 1.1830 0.3111 0.540 0.589

##

Likelihood ratio test=41.76 on 2 df, p=8.552e-10

n= 500, number of events= 88

head(residuals(fifth.fit$model,type="schoenfeld"))

6

histol instit

32 0.6213238 0.7095590

46 0.6340152 -0.2759473

47 -0.3548449 -0.2807959

90 -0.3561944 -0.2818638

121 0.6424457 0.7170601

124 0.6561889 0.7323994

Plotting Schoenfeld Residuals: The survival package includes the cox.zph function for testing the
Cox proportional hazards assumption and plotting scaled Schoenfeld residuals. See help(cox.zph) and
help(plot.cox.zph) for further details. The model fits from a γ-imputation procedure can also use the
cox.zph function:

test.assump <- cox.zph(imputed.fits,index=3,transform="km")

print(test.assump)

chisq df p

histol 4.39 1 0.036

instit 4.45 1 0.035

GLOBAL 5.34 2 0.069

plot(test.assump[1],main="Scaled Schoenfeld Residuals for histol")

In particular, as noted by [1], the imputation model assuming informative censoring and the Cox model
which is used to analyse the resulting imputed datasets cannot in general both be correctly specified. [1]
suggest examining the Schoenfeld residuals both for the Cox model fitted to the observed data and from those
after fitting Cox models to each imputed datasets to examine whether the proportional hazards assumption
appears to be satisfied.

4 Performing sensitivity analysis

In this section we give an example showing how the package can be used to show how changing γ (specifically
gamma.factor) affects the overall results. γ can be interpreted as the coefficient associated with a time
dependent binary covariate taking the value 0 prior to censoring and 1 following being censored. As γ is
increased, the coefficient associated with the covariate of censoring is increased, and one can examine how
sensitive inferences are to varying γ.

Broadly speaking there are two approaches to conducting a sensitivity analysis in this context. The first
is, in discussion with suitable subject matter experts, determine a range of plausible values for the sensitivity
parameter γ. One then examines how the substantive results change over this range, to determine if the
conclusions are robust across the defined range.

An alternative is a so called ‘tipping point analysis’. Here one increases γ until the substantive conclusions
change. One can then judge whether the value of γ needed to ‘tip’ the results over are plausible or implausible.
The judgement of what is thought plausible clearly requires input from clinical experts and trial specific
context information.

4.1 Simulated example

To illustrate the principle, in the following we simulate a simple dataset, with a single binary covariate
representing treatment allocation. For each individual we simulate a censoring time and an event time,
where the hazard for the event depends on treatment allocation. Here we generate the censoring and event
time entirely independently, so in fact the non-informative censoring assumption holds. Nonetheless, we use
the simulated dataset to illustrate how sensitivity for the log hazard ratio comparing the treatment groups
varies if we allow for informative censoring.

7

−
5

0
5

Scaled Schoenfeld Residuals for histol

Time

B
et

a(
t)

 fo
r

hi
st

ol

49 88 120 270 570 990

Figure 1: Scaled Schoenfeld residuals for histol for the third imputed data set and its model fit. See
help(plot.cox.zph) for plotting options

8

First we generate the simulated dataset:

set.seed(6110)

#simulate a time to event dataset, with two treatment groups

#note that here we are simulating with non-informative censoring

N <- 1000

gamma.dataset <- data.frame(Id=1:N,

DCO.time=rep(3,N))

#Z is a treatment variable, assigned in a 1:1 ratio

gamma.dataset$Z <- c(rep(1,N*0.5),rep(0,N*0.5))

#generate censoring and event times

C <- rexp(n = N,rate = 0.3)

T <- rexp(n = N,rate=0.05*exp(gamma.dataset$Z))

gamma.dataset$Y <- pmin(T,C,3)

gamma.dataset$delta <- 1*((T < C) & (T <3))

gamma.dataset$Z <- factor(gamma.dataset$Z)

4.1.1 Analyses assuming noninformative censoring

Now we fit a Cox model to the observed data, with treatment as covariate. This is valid if censoring is
noninformative, conditional on treatment group.

obsDataCox <- coxph(Surv(Y,delta) ~ Z, data=gamma.dataset)

summary(obsDataCox)

Call:

coxph(formula = Surv(Y, delta) ~ Z, data = gamma.dataset)

##

n= 1000, number of events= 163

##

coef exp(coef) se(coef) z Pr(>|z|)

Z1 0.9898 2.6907 0.1710 5.789 7.08e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

exp(coef) exp(-coef) lower .95 upper .95

Z1 2.691 0.3717 1.925 3.762

##

Concordance= 0.615 (se = 0.019)

Likelihood ratio test= 36.89 on 1 df, p=1e-09

Wald test = 33.51 on 1 df, p=7e-09

Score (logrank) test = 36.32 on 1 df, p=2e-09

Next, we will impute event times for those subjects with Z = 1 and who were censored prior to the data
cut-off time of 3. We first define a new variable in the data frame to select which subjects will be imputed:

gamma.dataset$basegamma <- NA

gamma.dataset$basegamma[(gamma.dataset$Y < 3) & (gamma.dataset$Z==1)] <- 1

Note that the value of the gamma argument for subjects who have had an event in the original data is
ignored.

Now we impute in the Z = 1 group, assuming non-informative censoring, by setting gamma.factor to
zero:

9

imputed.data.sets <- gammaImpute(formula=Surv(Y,delta)~Z,

data = gamma.dataset, m=100, gamma="basegamma",

gamma.factor=0, DCO.time="DCO.time")

fits <- ImputeStat(imputed.data.sets)

summary(fits)

est se t df Pr(>|t|) lo 95 hi 95

Z1 0.9923284 0.171484 5.786712 8864.249 7.421585e-09 0.6561801 1.328477

As we should expect, the estimate and standard error for the comparison of treatment groups is very
similar to the estimates from fitting the Cox model to the observed data. This is because the non-informative
censoring assumption made by fitting the Cox model to the observed data is the same non-informative
censoring assumption being made by the imputation model.

4.1.2 Analyses assuming immediate failure after censoring in Z = 1

We will now analyse making the rather extreme assumption that subjects in the Z = 1 group who were
censored prior to their data cut-off in fact fail immediately after they were censored. We first perform this
analysis directly, by generating a copy of the original data frame and modifying the time and event indicator
to reflect this assumption:

gamma.dataset.copy <- gamma.dataset

gamma.dataset.copy$Y[(gamma.dataset.copy$Z==1) & (gamma.dataset.copy$delta==0) &

(gamma.dataset.copy$Y<gamma.dataset.copy$DCO.time)] <-

gamma.dataset.copy$Y[(gamma.dataset.copy$Z==1) & (gamma.dataset.copy$delta==0) &

(gamma.dataset.copy$Y<gamma.dataset.copy$DCO.time)]+ 0.0001

gamma.dataset.copy$delta[(gamma.dataset.copy$Z==1) & (gamma.dataset.copy$delta==0) &

(gamma.dataset.copy$Y<gamma.dataset.copy$DCO.time)] <- 1

Now we fit the Cox model to this modified dataset:

immFailureCox <- coxph(Surv(Y,delta) ~ Z, data=gamma.dataset.copy)

summary(immFailureCox)

Call:

coxph(formula = Surv(Y, delta) ~ Z, data = gamma.dataset.copy)

##

n= 1000, number of events= 414

##

coef exp(coef) se(coef) z Pr(>|z|)

Z1 2.1460 8.5509 0.1522 14.1 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

exp(coef) exp(-coef) lower .95 upper .95

Z1 8.551 0.1169 6.345 11.52

##

Concordance= 0.707 (se = 0.01)

Likelihood ratio test= 317.8 on 1 df, p=<2e-16

Wald test = 198.8 on 1 df, p=<2e-16

Score (logrank) test = 287.4 on 1 df, p=<2e-16

The estimated log hazard ratio comparing Z = 1 versus Z = 0 is now larger. This makes sense, as we have
now assumed that in the Z = 1 group (only) those subjects who were censored actually failed immediately
after their censoring.

10

We now demonstrate that we can obtain the same results by using gammaImpute. To do this we impute
the original dataset using gamma.factor=1000, which increases the hazard for failure after censoring by
exp(1000) which R evaluates to infinity.

imputed.data.sets <- gammaImpute(formula=Surv(Y,delta)~Z,

data = gamma.dataset, m=100, gamma="basegamma",

gamma.factor=1000, DCO.time="DCO.time")

fits <- ImputeStat(imputed.data.sets)

summary(fits)

est se t df Pr(>|t|) lo 95 hi 95

Z1 2.146058 0.1522129 14.09906 Inf 0 1.847726 2.44439

Re-assuringly, the estimate and standard error are almost identical.

4.1.3 Analyses assuming censoring at data cut-off in Z = 0

We will now analyse make the opposite extreme assumption, namely that those in the Z = 1 group who
were censored prior to the data cut-off time (3) were all in fact event free at the time of data cut-off:

gamma.dataset.copy <- gamma.dataset

gamma.dataset.copy$Y[(gamma.dataset.copy$Z==1) & (gamma.dataset.copy$delta==0) &

(gamma.dataset.copy$Y<gamma.dataset.copy$DCO.time)] <- 3

Now we fit the Cox model to this modified dataset:

noFailureCox <- coxph(Surv(Y,delta) ~ Z, data=gamma.dataset.copy)

summary(noFailureCox)

Call:

coxph(formula = Surv(Y, delta) ~ Z, data = gamma.dataset.copy)

##

n= 1000, number of events= 163

##

coef exp(coef) se(coef) z Pr(>|z|)

Z1 0.5618 1.7538 0.1715 3.275 0.00106 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

exp(coef) exp(-coef) lower .95 upper .95

Z1 1.754 0.5702 1.253 2.455

##

Concordance= 0.568 (se = 0.019)

Likelihood ratio test= 11.42 on 1 df, p=7e-04

Wald test = 10.72 on 1 df, p=0.001

Score (logrank) test = 11 on 1 df, p=9e-04

The estimated log hazard ratio comparing Z = 1 versus Z = 0 is now smaller than that obtained from
analysing the original observed data. Again this makes sense, as we have now assumed that in the Z = 1
group those subjects who were censored prior to the data cut-off time are now censored at the data cut-off
time.

As before, we now demonstrate that we can obtain the same results by using gammaImpute. To do this we
impute the original dataset using gamma.factor=-1000, which increases the hazard for failure after censoring
by exp(−1000) which R evaluates to zero.

11

imputed.data.sets <- gammaImpute(formula=Surv(Y,delta)~Z,

data = gamma.dataset, m=100, gamma="basegamma",

gamma.factor=-1000, DCO.time="DCO.time")

fits <- ImputeStat(imputed.data.sets)

summary(fits)

est se t df Pr(>|t|) lo 95 hi 95

Z1 0.5617668 0.1715479 3.274693 Inf 0.001057768 0.225539 0.8979945

Re-assuringly, the estimate and standard error are almost identical to those obtained from the noFailureCox
model fit.

4.1.4 Sensitivity analysis

The preceding analyses make assumptions that would ordinarily be considered extreme, and almost certainly
implausible. As discussed earlier, it may be of interest to examine how the treatment effect estimate varies
as γ is varied between these extremes. We now repeatedly perform the imputation and analyse the resulting
datasets, for various values of gamma.factor (again only imputing in those with Z = 1). The code below
defines a function which performs the imputation for a given value of gamma.factor. We now use 10
imputations to reduce computation time. Through an initial analysis, we established that the treatment
effect HR effectively stablizes at values of gamma.factor above 7 and below -7. We therefore only perform
imputations for values of gamma.factor between -7 and 7:

#we now define a function which will apply the gamma imputation and return

#the model fit results. Note we will only ask for imputation in Z=1 group

#by setting

my.imputation.function <- function(gamma.factor){
imputed.data.sets <- gammaImpute(formula=Surv(Y,delta)~Z,

data = gamma.dataset, m=10, gamma="basegamma",

gamma.factor=gamma.factor, DCO.time="DCO.time")

fits <- ImputeStat(imputed.data.sets)

return(summary(fits))

}

#set random seed

set.seed(12123)

#we will impute across the following sequence of gamma values

gamma.factor <- seq(-7,7)

#perform the imputations

answers <- lapply(gamma.factor,my.imputation.function)

#extract out the Z=1 vs Z=0 results into a matrix and add gamma column

Z1 <- do.call("rbind",lapply(answers,function(x)x["Z1",]))

Z1 <- cbind(Z1,gamma.factor)

head(Z1)

est se t df Pr(>|t|) lo 95 hi 95

[1,] 0.5617668 0.1715479 3.274693 Inf 0.0010577679 0.2255390 0.8979945

[2,] 0.5626188 0.1715477 3.279664 122226191.19 0.0010393092 0.2263915 0.8988462

[3,] 0.5645710 0.1715983 3.290074 4755966.60 0.0010016190 0.2282445 0.9008976

[4,] 0.5707400 0.1714513 3.328876 2825716.38 0.0008719844 0.2347015 0.9067784

[5,] 0.5966176 0.1714414 3.480009 96040.54 0.0005016185 0.2605944 0.9326407

[6,] 0.6415657 0.1708002 3.756235 38639.28 0.0001727420 0.3067930 0.9763385

12

−6 −4 −2 0 2 4 6

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Increase in log hazard after censoring: gamma

lo
g

H
R

 fo
r

Z
=

1
vs

. Z
=

0

Figure 2: Estimates for log HR comparing group 1 to group 0, as a function of gamma with 95% confidence
interval. Note that gamma=0 corresponds to assuming non-informative censoring.

gamma.factor

[1,] -7

[2,] -6

[3,] -5

[4,] -4

[5,] -3

[6,] -2

#ylim=c(-0.5,2)

plot(gamma.factor,Z1[,"est"],type="l",ylim=c(-0.5,2.5),ylab="log HR for Z=1 vs. Z=0",

xlab="Increase in log hazard after censoring: gamma")

lines(gamma.factor,Z1[,"lo 95"],lty=2)

lines(gamma.factor,Z1[,"hi 95"],lty=2)

abline(v=0)

Figure 2 shows the estimated log HR for Z = 1 versus Z = 0 (and pointwise 95% confidence intervals)
as gamma.factor ranges between -7 and 7. As we should expect given our earlier results, the log HR ranges
from around 0.5 to just over 2 as we vary gamma.factor.

13

References

[1] Dan Jackson, Ian White, Shaun Seaman, Hannah Evans, Kathy Baisley, and James Carpenter. Relaxing
the independent censoring assumption in the Cox proportional hazards model using multiple imputation.
Statistics in Medicine, 33(27):4681–4694, 2014.

[2] Xiao-Li Meng. Multiple-Imputation Inferences with Uncongenial Sources of Input. Statistical Science,
9(4):538–558, 1994.

[3] Donald B Rubin. Multiple Imputation for Nonresponse in Surveys (Wiley Series in Probability and
Statistics). 1987.

[4] Donald B Rubin and Nathaniel Schenker. Multiple imputation in health-are databases: An overview and
some applications. Statistics in medicine, 10(4):585–598, 1991.

14

